THE UNIVERSITY OF RHODE ISLAND

COLLEGE OF The Environment And Life Sciences

 \odot

THE TIDE IS HIGH BUT I'M HOLDING ON

(HOW CLIMATE CHANGE IS AFFECTING ONSITE WASTEWATER TREATMENT SYSTEMS)

ALISSA COX, PHD & JOSE AMADOR, PHD

MARCH 31, 2021

Laboratory of Soil Ecology & Microbiology University of Rhode Island

CLIMATE CHANGE'S EFFECTS ON SOUTHERN NEW ENGLAND COASTS

- Increased storm activity
 - More frequent
 - More intense
 - Trend expected to accelerate!
 - Result: Flooding & erosion

- Changes in precipitation patterns
 - Droughts & excess precipitation
 - Implications for groundwater tables

- Sea Level Rise
 - •Makes everything worse!
 - More flooding
 - Surface flooding during storms & high tide
 - Elevated groundwater tables

RI'S SOUTHERN COAST = DENSELY POPULATED & SERVED BY O SEPTIC SYSTEMS

Coastal septic systems

Coastal Stormal

 \bigcirc

• COASTAL SEPTIC SYSTEMS

IS SEPARATION (DISTANCE) ANXIETY JUSTIFIED ALONG SOUTHERN RI COAST?

• APPROACH 1: LOOK AT HISTORIC DATA

 APPROACH 2: LOOK AT 10
 EXISTING DRAINFIELDS IN THE FIELD

HISTORIC DATA: COASTAL GROUNDWATER TABLES IN SOUTHERN RI RISING

Cox et al. (2019)

INVESTIGATING GROUNDWATER TABLES AND SEPTIC SYSTEMS IN THE FIELD (10 SITES)

GROUND-PENETRATING RADAR (GPR)

۲

WATER TABLE DATA

Cox et al. (2020A)

FIELD INVESTIGATIONS: IMPAIRED SEPARATION DISTANCE A COMMON PROBLEM

IMPAIRED SEPARATION DISTANCE = CURRENT & FUTURE PROBLEM FOR SEPTIC SYSTEMS ALONG COAST!

Cross-section of Drainfield Trenches

Drainfield

Crushed

Stone

Wastewater

Seasonal High Water Table \

Groundwater

Perforated

Pipe

Infiltrative

Surface

.....

A

IMPAIRED SEPARATION DISTANCE ... SO WHAT?!

 \bigcirc

REMINDER: WHAT DO WE WANT FROM OUR STA?

- Keep wastewater away from people
- Groundwater recharge/stream flow
- Remove
 - Suspended solids
 - BOD, N, P
 - Emerging pollutants
 - Pathogens

HOW DOES THE STA DO ITS THING?

WHAT'S AFFECTED BY WATER AND HEAT?

WATER

• FILTRATION

...

- OXYGEN DIFFUSION
- MICROBIAL ACTIVITY
- PATHOGEN SURVIVAL
- REDOX POTENTIAL

- MICROBIAL ACTIVITY
- PATHOGEN SURVIVAL
- OXYGEN SOLUBILITY
- SPEED OF CHEMICAL REACTIONS

. . .

Δ IN SOIL MOISTURE = Δ MICROBIAL ACTIVITY

Fig. 7 Correlations of volumetric water content and soil respiration. The plotting symbol represents the month of the year that the measurements were made. Each datum is a mean of 3 or 4 TDR water content measurements and 6 flux measurements for a study area on a given date. The August (8) and September (9) data where water content was < 0.12 cm³ cm⁻³ were fitted to the linear regression: flux $\alpha = -128 + (2852 \times \text{water content}); R^2 = 0.48$, which is significant at $\alpha = 0.05$ (d.f. = 21). The data from the rest of the year where water content was > 0.12 cm³ cm⁻³ were fitted to the linear regression: flux at $\alpha = 0.05$ (d.f. = 21). The data from the rest of the year where water content was > 0.12 cm³ cm⁻³ were fitted to the linear regression: flux = 201 - (198 × water content); $R^2 = 0.22$, which is significant at $\alpha = 0.01$ (d.f. = 131).

Davidson et al. (1998)

Fig. 1—The relationship between water-filled pore space and relative amount of microbial nitrification (after Greaves and Carter, 1920), denitrification (after Nommik, 1956), and respiration [O₂ uptake (○-○) and CO₂ production (●-●) as determined in this study]. Data for nitrification originally expressed as percentage waterholding capacity.

Linn and Doran (1984)

TEMPERATURE = LESS DISSOLVED O_2

T (°C)

 \bigcirc

.

HOW WILL CLIMATE CHANGE AFFECT STAS?)

- Intact Soil Core Mesocosms
- Three Drainfield Types:
 - Pipe & stone P&S
 - Shallow narrow SND
 - Shallow narrow GeoMat
- Climate Conditions:
 - Present climate: 70°F
 - Climate change: 77°F; Water table up 1 ft

Cooper JA, Loomis GW, Amador JA (2016). Hell and High Water: Diminished Septic System Performance in Coastal Regions Due to Climate Change. PLoS ONE 11(9): e0162104. doi:10.1371/journal.pone.0162104

 \bigcirc

FECAL COLIFORM BACTERIA

PHOSPHORUS REMOVAL

 IMPAIRED SEPARATION DISTANCE (& HIGHER TEMPERATURE)...
 SO WHAT?!

- Lower BOD
- Increased FCB
- Increased P
- Some increase in N

Coastal Stormal

 \bigcirc

° O

> Rising Rising undwater Broundwater Eroundwater tables

COASTAL STORMS = EPIC DESTRUCTION!

Army Corps proposes raising homes

COASTAL STORMS – "PREPAREDNESS" ... ?!

Army Corps proposes raising homes

GOAL: QUANTIFY STORM IMPACTS! • MODEL DIFFERENT STORM CONDITIONS ALONG SOUTHERN RI COAST...

COUNT NUMBER OF SEPTIC SYSTEMS AFFECTED

DAMAGE POST-SUPFRSTORM SANDY (2012)

+ Flood Maps

- 25, 50, 100 & 500-Year **Storm Events**
- Hurricane Worst Case ulletScenarios (Categories 1-
- + 2-foot Contour Lines

CREATED INTERSECTS OF SEPTIC SYSTEM PARCELS INUNDATED BY EACH STORM

Impact Category	Effect on Septic System	Duration
"Serious"	Major Repairs / Total Replacement	During Storm & Weeks – Months after Storm
	Minor Repairs	During Storm & Days – Weeks after Storm
"Ephemeral"	No Long-term Effects	During Storm

COASTAL STORM IMPACT SUMMARY (SOUTHERN RI COAST) 25-Y TO 500-Y STORM HURRICANES (CAT 1 – 4)

 3 – 4K SYSTEMS AFFECTED BY FLOODING

- 2 5K SYSTEMS AFFECTED BY FLOODING (?)
- ~200 SERIOUSLY IMPACTED
- ~ 65 MODERATELY IMPACTED

- ~200 SERIOUSLY IMPACTED
- ~ 65 MODERATELY IMPACTED

• REST EPHEMERALLY IMPACTED

Require

repairs!

• REST EPHEMERALLY IMPACTED

+ 30cm SLR => + ~200 ephemerally impacted systems

WHY STORM DAMAGE IS CONCERNING FOR SEPTIC SYSTEMS...

- Septic system repairs & replacements...
 - Take weeks months!
 - Expensive!
 - Repairs: \$1k \$15k
 - Installing Advanced Treatment Tech: \$23k \$30k
 ...PER SYSTEM!

...what happens to wastewater in the meantime?

Contact: <u>alibba@uri.edu</u> **@**AlissaHCox

Contact: jamador@uri.edu

USDA NIFA - NE 1545 Multi-state HATCH Project

Natural Resources Conservation Service

0,

TOWN OF CHARLESTOWN

- A. H. COX, G. W. LOOMIS & J. A. AMADOR. 2019. "PRELIMINARY EVIDENCE THAT RISING GROUNDWATER TABLES ARE THREATENING COASTAL SEPTIC SYSTEMS." *JOURNAL OF SUSTAINABLE WATER IN THE BUILT ENVIRONMENT*. 5(4):04019007. <u>DOI: 10.1061/JSWBAY.0000887</u>
- A. H. COX, D. SURABIAN, G. W. LOOMIS, J. D. TURENNE & J. A. AMADOR. 2020. "TEMPORAL VARIABILITY IN THE VERTICAL SEPARATION DISTANCE OF SEPTIC SYSTEM DRAINFIELDS ALONG THE SOUTHERN RHODE ISLAND COAST." WATER AIR & SOIL POLLUTION. 231(107). DOI: 10.1007/S11270-020-04488-Z
- A. H. COX, M. J. DOWLING, G. W. LOOMIS, S. E. ENGELHART & J. A. AMADOR. 2020. "GEOSPATIAL MODELING SUGGESTS THREATS FROM STORMY SEAS TO RHODE ISLAND'S COASTAL SEPTIC SYSTEMS." JOURNAL OF SUSTAINABLE WATER IN THE BUILT ENVIRONMENT. 6(3):04020012. DOI: 10.1061/JSWBAY.0000917
- J.A. COOPER, G.W. LOOMIS & J.A. AMADOR J(2016). HELL AND HIGH WATER: DIMINISHED SEPTIC SYSTEM PERFORMANCE IN COASTAL REGIONS DUE TO CLIMATE CHANGE. *PLOS ONE* 11(9): E0162104. DOI:10.1371/JOURNAL.PONE.0162104