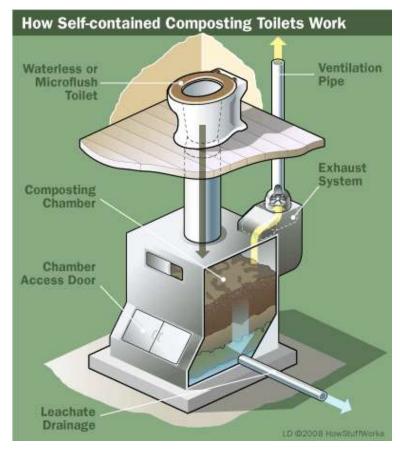


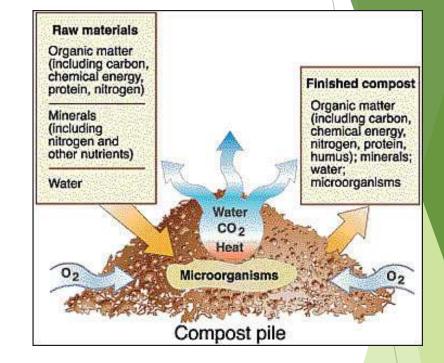
Eco-friendly Toilet Technologies

Presentation by: Erika Woods, RS Senior Environmental Specialist/ Deputy Dir<u>ector, BCDHE</u>

A Special thank you to Maureen Thomas, Water Resource Specialist at the Buzzards Bay Coalition for the use of slides relating to the West Falmouth Harbor Nitrogen-Reducing Septic System Demonstration Project

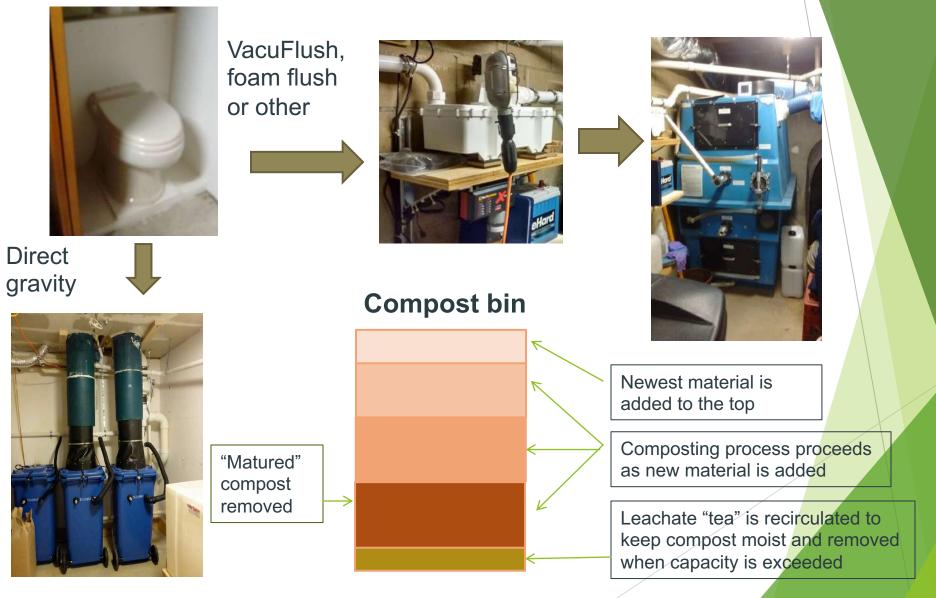


Falmouth Study & Technology Review


- Review 2 studies in Falmouth-Nitrogen and Phosphorus removal
 - Eco-toilet
 - I/A technologies
- Review types of technology used
- Installation considerations

Composting toilets

Example of a composting toilet <http://home.howstuffworks.com/green-living/composting-toilet1.htm>



• Need regular "stirring" and monitoring of liquid levels and oxygen supply

3

10/4/19

Composting toilets

Composting toilets

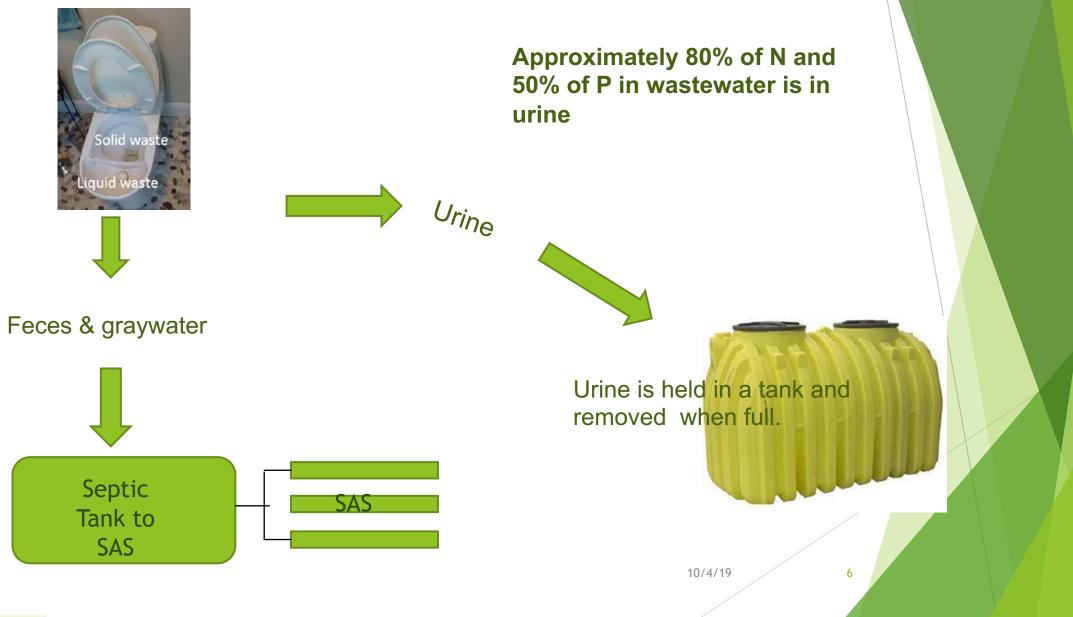
314 018444

10 – 30 % estimated reduction in waste volume

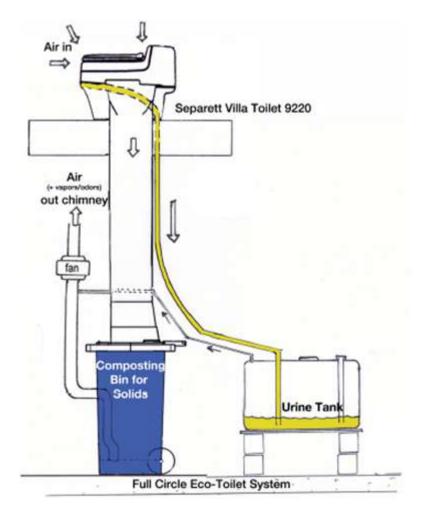
S14 01643

It has been estimated that only 17 % N volatilizes from compost under ideal conditions. Reported losses range from 50%-94%

Aeration

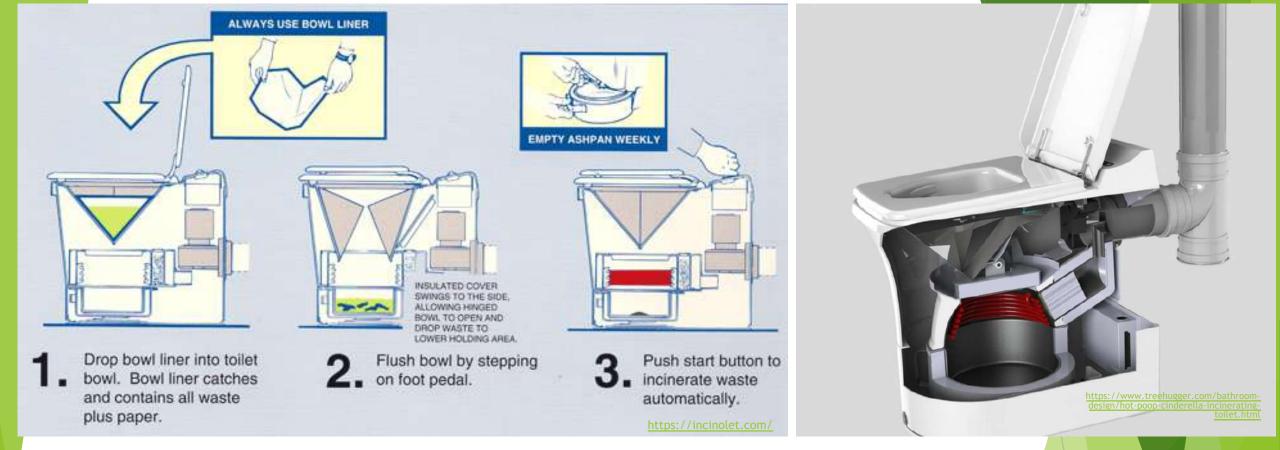

Approximately 87% of N & P are removed in compost and volatilization/ evaporation combined

Approximately 13 % of N & P are removed in the leachate "tea".


10/4/19

5

Urine diversion



Multiple technologies

Some locations may require a combination of technologies depending on the situation

Diagram by Rolf Kleuver

Incinerating Toilets Gas or Electric Incinolet •

- Cinderella
- EcoJohn
- Destoilet

Technology limitations

- Learning curve for new users and guests
- Social acceptance
- How to dispose of Urine, compost and compost toilet effluent
- Specific to UD
 - Difficult to "aim" properly
 - Urine ~95% water- High cost of collection, storage and transportation
 - High rates of direct application of urine thought to increase salinity and conductivity in the soils
 - Difficult to keep clean due to low water flow

Technology limitations

- Specific to composting toilets and multiple technology situation
 - Proper operation is key to success
 - Proper aeration
 - Moisture content
 - Proper temperature
 - Temperatures >50°C-56°C(122°F- 133°F) for up to 3 days to kill pathogens
 - Flies and gnats
 - Back up battery for fan during power outage

Technology limitations

- Specific to Incinerating toilets
 - Proper operation is key to success
 - Must use requires anti-foam agent, liner or other
 - Regular removal of ash
 - Electric- cannot use during power outage
 - Fire hazard if not installed properly (Chamber reaches ~1400°F)

11

Materials disposal- Compost

TABLE 1 TYPICAL PATHOGEN SURVIVAL TIMES AT 20 TO 30°C IN VARIOUS ENVIRONMENTS

	Survival Time, Days				
Pathogen	Fresh Water and Wastewater	Crops	Soil		
Bacteria					
Fecal coliforms ^a	< 60 but usually < 30	< 30 but usually < 15	< 120 but usually < 50		
Salmonella (spp.)ª	< 60 but usually < 30	< 30 but usually < 15	< 120 but usually < 50		
Shigellaª	< 30 but usually < 10	< 10 but usually < 5	< 120 but usually < 50		
Vibrio cholerae ^b	< 30 but usually < 10	< 5 but usually < 2	< 120 but usually < 50		
Protozoa					
E. histolytica cysts	< 30 but usually < 15	< 10 but usually < 2	< 20 but usually < 10		
Helminths					
A. lumbricoides eggs	Many months	< 60 but usually < 30	< Many months		
Viruses ^a					
Enteroviruses ^c	Enteroviruses ^c < 120 but usually < 50		< 100 but usually < 20		

a In seawater, viral survival is less and bacterial survival is very much less than in fresh water.

b V. cholerae survival in aqueous environments is a subject of current uncertainty.

c Includes polio, echo, and coxsackie viruses.

Source: Adapted from: Crites and Tchobanoglous, 1998.

https://www.epa.gov/sites/production/files/2015-06/documents/comp.pdf

- Temperatures >50°C-56°C(122°F-133°F) for up to 3 days to kill pathogens
- Most compost facilities not set up to handle human waste
- Per MA DEP- can be buried on property at least 6" below ground
 - This cycles nutrients back into soils
 - Other option is removal by septic hauler

10/4/19

12

Materials disposal-Compost toilet effluent-(CTE)- AKA tea

- Harmful pathogens
- Insufficient N for fertilizer
- CTE- 98 % water

Experiment related to Falmouth Eco-toilet Project

- Sent samples to Maine School of Composting
- Added to 3 different feedstock for compost that are available on Cape

10/4/19

13

Oak leaves, horse bedding, wood shavings

Materials disposal

- Urine: use for fertilizer
 - Cost of transportation- 95% water
 - Research being done to dehydrate
 - Urine generally sterile but may be contaminated with feces
 - Contains pharmaceuticals
 - High rates of direct application of urine thought to increase salinity and conductivity in the soils
- Incinerating toilets
 - Significant volume reduction
 - Pathogens removed from waste product
 - Per manufacturer- discard with household trash

User feedback

- Overall favorable in Falmouth Eco-toilet project
- One case cost to replace complete system was avoided (~>\$15000)
- Some "hands on" maintenance required.
- Composting toilets-Odor not an issue as long as fan was in operation- installation of battery suggested in case of power outage
- Incinerating toilets-odor identified as an issue
- Hard to use & clean
- Social acceptance

Cost considerations

- UD Technology
 - Installation cost of ~ 500 gallon exterior tank- or smaller tank to be emptied more frequently
 - Installing/ Replacing fixtures
 - Re-routing plumbing
 - Cost of urine removal (every 1-2 years based on use)
- Composting Technology
 - Installing/ replacing fixtures
 - Installation of storage facilities
 - Electricity for fan- backup battery
 - Compost removal cost

Cost considerations

- Incinerating toilets
 - Energy use- reported to be very low
 - Additives, foam, liners
- Centralized wastewater treatment
 - High collection cost due to scattered population centers
 - Economies of scale
- I/A Technology
 - Efficiency tied to proper operation
 - Installation cost complete system
 - Annual O&M cost (Variable depending on town requirements)

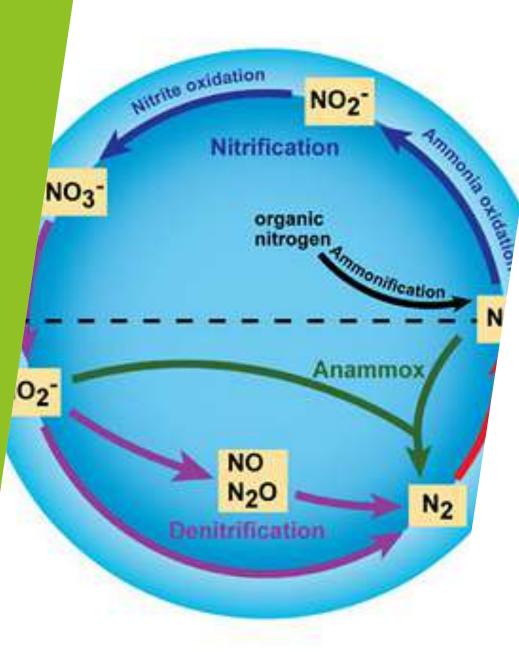
Uses and installation

- Areas requiring nutrient reduction
- Environmentally sensitive areas
- Reduce water usage
- ► Cabins, campers
- Areas of home or compound without ability to install flush toilet
- Local & State regulations may limit installation
 - Plumbing code- Does it count as a toilet fixture?
 - Health codes: Sanitation, disposal of end product
 - Building code
 - Fire code- Incinerating toilets

Falmouth Eco-Toilet Project

- Falmouth, as part of CWMP, looking to assess the efficacy of different eco-toilet options
- Participants given financial incentives to participate in program
 - Offered \$5,000 towards installation of technology plus septic pump-out
 - Opportunity, in certain areas, to avoid paying betterment for town sewer (approx. \$17,000)

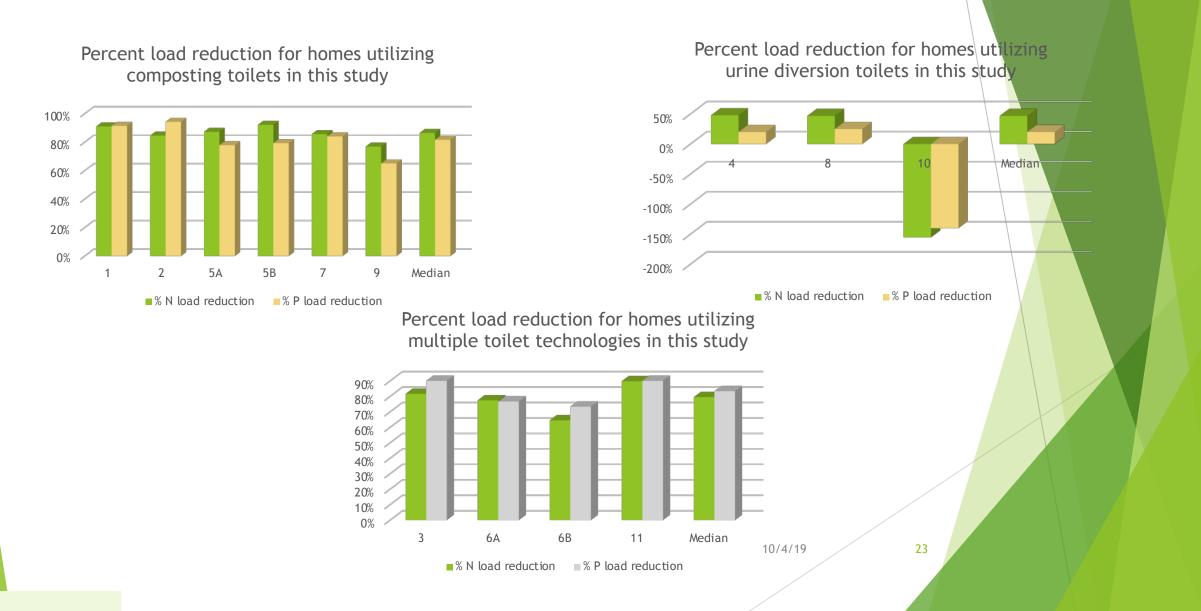
About the program:


- Program: Followed 11 test sites
 - $\blacktriangleright \text{ Total N} = \text{TKN} + \text{NO}_2 + \text{NO}_3$
 - Total P
- Technologies employed by participants:
 - Dubbletten Urine Diversion toilet
 - Sun Mar self contained unit
 - Phoenix Composting
 - ► Full Circle

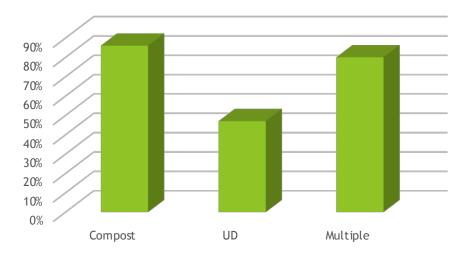
Results assumptions

Water use

- Properties with no pre-installation sampling
- Properties with erratic water use readings
- Assumed 20% water use reduction from 55 gpd/person to 44 gpd/person
 - Gallons based on DEP Title 5
 - Percent reduction based on this study and EPA study showing toilets account for approximately 30% of household flow

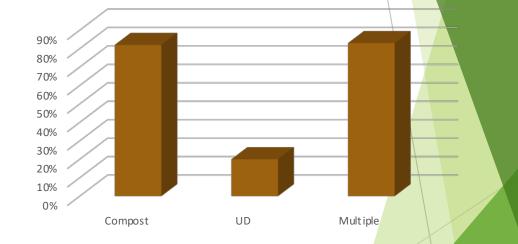


Results assumptions


Total nitrogen and total phosphorus

- Some properties with no pre-installation sampling
- Some pre-installation samples were extremely high
- Very few studies demonstrating typical residential effluent levels of TN & TP
- Lowe, K.S. et al. "Influent constituent characteristics of the modern waste stream from single sources." Water Environment Research Foundation, 2009.
 - Mean values of all sites: 64 mg/L TN and 10.3 mg/L TP used for most sites with no preinstallation samples
 - Maximum values of all sites: 124 mg/L TN and 39.5 mg/L TP used for sites with abnormally high preinstallation samples

Percent load reduction for all properties



Side by side load reduction

Median % TN Reduction by Technology

Median % TP Reduction by Technology

24

10/4/19

Study limitations

- Sample locations variable- D-box not always accessible
- Takes time for septic tank to fill in order to sample
- Water meter readings not an accurate indication of usage-affected by irrigation etc.
- Pre-install numbers not known for some properties
 - Limited research has been done on constituents of wastewater
- Efficiency affected by knowledge and attentiveness of user/ operator
- Small sample size- 11 participants
 - 2 already had technology prior to study 10/4/19

West Falmouth Harbor Nitrogen-Reducing Septic System Demonstration Project

- Upgrade 30 existing septic systems within 300 feet of MHW of the harbor to nitrogenreducing systems
- Use best available technologies that meet 12 mg/L total nitrogen removal or less
- Provide \$10,000 subsidies to Phase I & \$7,500 for Phase II homeowner volunteers
- Evaluate total costs & implementation logistics
- Monitor & report results

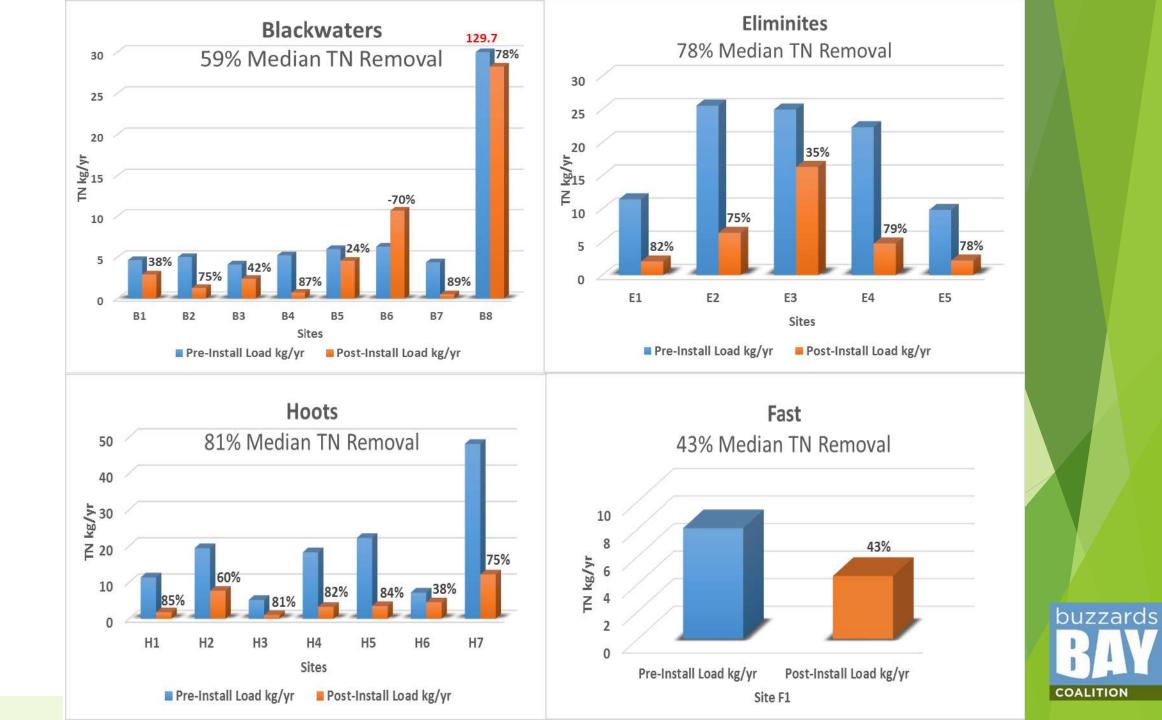
Bay Coalition

🛃 Map prepared by: Buzzards Bay National Estuary Program, 2870 Cranberry Highway, East Wareham, MA 02538. www.buzzardsbay.org. March 10, 2015

Qualifying Technologies

Nitrogen-reducing technologies meeting 12 mg/L TN

AdvanTex AX20RT	Layered Soil Treatment Area
Amphidrome-SBR	Nitrex
Biobarrier MBR	NitROE/SanTOE
Bioclere	NJUN
Blackwater	RUCK
BUSSE Green Tech	Hydro-Kinetic
Eliminite	Waterloo Biofilter
GPC	SepticNET
Hoot	SeptiTech


Monitoring Results

- Nitrogen-reduction goal of at least 67%
- Phase I & II median total nitrogen-reduction 76%
 - Blackwaters 59%
 - Eliminites 78%
 - ► Hoots 81%
 - Layer Cake 90%
 - **Fast** 43%

Implementation Costs

AVERAGE COST ITEM RANGE COST Equipment \$8,437 \$4,146-\$10,625 (denitrification tanks) Engineering \$2,620 \$606-\$4,200 Installation (adding a nitrogen-reducing \$10,600-\$15,350 \$11,096 system to an existing Title 5 system) Installation (full upgrade from \$20,675 \$17,720-\$25,600 a cesspool) Landscaping VARIABLE \$2,142.97

Operation, Maintenance, & Monitoring Costs

System	O&M	Sampling (BCDHE)	Required Sampling Frequency Year Round / Seasonal	
Blackwater	\$400/year	\$52/month	N/A	Once/Year
Eliminite (pilot)	\$1,000/ye ar	\$117/month	Year 1 - monthly Year 2 - quarterly	Year 1 - 3x/Season Year 2 - 3x/Season
Fast	\$250/year	\$52/month	4x/Year	2x/Season
Hoot	\$350/year	\$52/month	2x/Year	2x/Season
NitROE (pilot)	\$1,000/ye ar	\$117/month	Year 1 - monthly Year 2 - quarterly	Year 1 - 3x/Season Year 2 - 3x/Season
Perc-Rite	\$250/year	\$52/month	Once/Year	Once/Year

Keys to Success

- Collaboration
- Funding
- Neighborhood Advocacy

buzzards

COALITION

Results

QUESTIONS??

ERIKA.WOODS@BARNSTABLECOUNTY.ORG

508-375-6620

10/4/19

Project partners:

Town of Falmouth

Buzzards Bay Coalition

BCDHE

West Falmouth Village Association

Funding from US EPA grant through Southeast New England Coastal Watershed Program

35

Cape Cod Commission

10/4/19